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Abstract

Background: Structural magnetic resonance imaging (sMRI) can provide mor-
phological information about the structure and function of the brain in the same
scanning process. It has been widely used in the diagnosis of Alzheimer’s
disease (AD) and mild cognitive impairment (MCI).

Purpose: To capture the anatomical changes in the brain caused by AD/MCI,
deep learning-based MRI image analysis methods have been proposed in
recent years. However, it is observed that the performance of most existing
methods is limited as they only construct a single type of deep network and
ignore the significance of other clinical information.

Methods: To make up for these defects, an ensemble framework that incor-
porates three types of dedicatedly-designed convolutional neural networks
(CNNs) and a multilayer perceptron (MLP) network is proposed, where three
CNNs with entropy-based multi-instance learning pooling layers have more
reliable feature selection abilities. The dedicatedly-designed base classifiers
can make use of the heterogeneous data, and empower the framework
with enhanced diversity and robustness. In particular, to consider the inter-
actions among the base classifiers, a novel multi-head self-attention voting
scheme is designed. Moreover, considering the chance that MCI can be trans-
formed to AD, the proposed framework is designed to diagnose AD and
predict MCI conversion simultaneously, with the aid of the transfer learning
technique.

Results: For performance evaluation and comparison, extensive experiments
are conducted on the public dataset of the Alzheimer’'s Disease Neuroimag-
ing Initiative (ADNI). The results show that the proposed ensemble framework
provides superior performance under most of the evaluation metrics. Espe-
cially, the proposed framework achieves state-of-the-art diagnostic accuracy
(98.61% for the AD diagnosis task, and 84.49% for the MCI conversion prediction
task).

Conclusions: These promising results demonstrate the proposed ensemble
framework can accurately diagnose AD patients and predict the conversion
of MCI patients, which has the potential of clinical practice for diagnosing AD
and MCI.

KEYWORDS
Alzheimer’s disease, computer-aided diagnosis, ensemble learning, magnetic resonance imaging,
multiple instance learning

Med Phys. 2023;50:209-225.

wileyonlinelibrary.com/journal/mp

© 2022 American Association of Physicists in Medicine. 209


mailto:hao.luo@hit.edu.cn
https://wileyonlinelibrary.com/journal/mp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.15985&domain=pdf&date_stamp=2022-10-04

ENSEMBLE OF CNN FOR MCI AND AD DIAGNOSIS

2 | MEDICAL PHYSICS
1 | INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenera-
tive disease and contributes to 60%—80% of dementias,
over 30 million people around the world are diagnosed
with AD."2 As the most common form of dementia, AD
can cause irreversible damage or destruction of neu-
rons in brain regions over time, and gradually has a
serious impact on the life of patients. Mild cognitive
impairment (MCI) is often seen as a preclinical stage
of AD, the predominant symptom of MCI is mild mem-
ory loss which has less impact on a person than AD?
Around 10% of the MCI patients worldwide develop to
AD per year, while a majority of them stay stable or
even revert to the normal state* Those MCI patients
who develop to AD are medically known as progres-
sive MCI (pMCI), in contrast, patients who stay stable
are stable MCI (sMCI). Therefore, distinguishing sMCI
from pMCI has been typically considered as an early
prediction of AD dementia. In particular, because there
is no effective treatment to cure AD, reliable early diag-
nosis is crucial for the control of AD. And early diagnosis
will help for the better targeted selection of individ-
uals with MCI, thus allowing early implementation of
treatment strategies and altering the course of this
disease.’

Various biomarkers (e.g., positron emission tomogra-
phy (PET)® and MRI’) and biospecimens (e.g., cere-
brospinal fluid, CSFS) measured in vivo constitute dom-
inant features in the diagnosis of AD. These biomarkers
and biospecimens are typically employed for evaluating
the development of AD, which have been well validated
in many clinical settings.’ For example, structural MRI
can noninvasively capture cerebral atrophy caused by
loss of neurons and dendritic pruning,'® which provides
a powerful auxiliary pattern for brain research and clin-
ical diagnosis. In addition, the clinical information of
individuals can be used to partially indicate disease sta-
tus, which typically includes demographic information
and cognitive and neuropsychological measures. Many
cognitive and neuropsychological measures, such as
the mini mental state examination (MMSE),'" clinical
dementia rating scale (CDRSB),'? Alzheimer’s disease
assessment scale (ADAS),'® and Ray auditory verbal
learning test (RAVLT),' etc., can reflect the cognitive
level of an individual and reveal the disease progression.

Computer-aided methods have been a growing inter-
est in the assessment and treatment of serious brain
diseases, such as brain tumors,'® autism,'® and Parkin-
son’s disease.!” AD as one of the serious brain diseases
also receives much attention. To achieve the reliable
diagnosis of AD and MCI, machine learning-(ML) or
deep learning-(DL) based methods have been devel-
oped in many studies based on structural magnetic
resonance imaging (sMRI). These existing methods
include at least two main components: (1) extraction
of imaging features and (2) construction of classi-

fication models. According to the scale of feature
extraction, these methods are usually categorized into
(1) subject-level, (2) region-level, (3) patch-level, and (4)
slice-level.'® The subject-level methods 922 extract fea-
tures from voxel intensities directly, while the extracted
features are high dimensional and these methods are
susceptible to overfitting due to the small number
of samples. The region-level methods?>?% focus on
pre-determined brain regions of structure or function,
and extract representative features from these regions.
Although region-level features have lower dimensions
than subject-level features, they may not cover all pos-
sible pathological parts of the whole brain and miss
some subtle changes in pathology. The patch-level
methods?’~2° combine the above two methods, attempt-
ing to capture the disease-related pathologies in the
local brain. The key step of patch-level methods is to
select patches and combine them to obtain informa-
tion about the brain. The slice-level methods®?3" are
closer to the diagnosis modes of physicians, which uti-
lize 2D slice images from sMRI to extract features and
then count each slice-level result to obtain a subject-
level diagnosis. ML-based methods usually need to
extract features manually and then construct a con-
ventional classifier to complete diagnosis, such as
support vector machine (SVM), while DL-based meth-
ods perform feature extraction and classification only by
convolutional neural networks (CNNs), which have been
demonstrated more powerful than ML-based methods.

In the above methods, the requirements of slice-
level methods for computing resources are much lower
than the use of regions, patches, or subjects. And the
architectures of classifiers in slice-level methods are
also simpler than other methods. In addition, the supe-
rior performance of DL-based methods often depends
on numerous learnable parameters of networks. Many
existing DL-based studies have been limited to using a
single CNN for AD diagnosis or MCI conversion pre-
diction. However, due to the scarcity of medical data,
it is challenging for an individual CNN to achieve reli-
able classification with the small number of available
training data.

To overcome this limitation, ensemble learning meth-
ods have been applied to the disease diagnosis, and
effectively combined with the CNN.3? There are very
few works used CNN-based ensemble classifiers for
AD diagnosis in recent years333¢ Ensemble learn-
ing is the algorithm that constructs a set of classifiers
and then performs classification by aggregating their
predictions3” And the ensemble learning methods have
been proved that can enhance the reliability of diag-
nosis, while the main drawback of these works is that
each classifier is assigned the same weight when the
final results are obtained by the majority- and average-
voting. These fusion methods do not perform adaptive
fusion based on each classifier and may be affected by
the weaker classifier in the ensemble.

3SUBD1T SUOWIWLOD dAIIEa1D) 3|eal|dde ay Aq pausenof ale saie YO ‘s JO Sa|nJ 10y Arelq1auljuQ A3|IAA UO (SUO 1} PUOD-PUR-SWLLB) WO A3 | 1M Aleld 1pulUo//:Sd)y) SUOIIPUOD pue SWB | 8L} 89S *[£202/TT/02] Uo AriqiauliuQ A3|IA ‘Ues iuodieD JO AsPAIUN AQ S86ST dw/Z00T 0T/10p/wod A3 1m Arelq 1 put|uo wdee//sdny Wwoiy papeojumoq ‘T ‘€202 ‘602VELYE



ENSEMBLE OF CNN FOR MCI AND AD DIAGNOSIS

In this work, the target is to propose an ensemble
framework that can conduct the reliable diagnosis of
AD and MCI simultaneously. For clarity, the following two
research tasks are defined:

1. Task 1 (AD vs. CN): Distinguish between whether a
subject (a patient) is cognitively normal (CN) or with
AD.

2. Task 2 (pbMClI vs. sMCI): Distinguish between whether
an MCI patient belongs to pMCI or sMCI.

The contributions of this work can be summarized as
follows:

* A robust ensemble learning framework is pro-
posed to make use of the multi-modal informa-
tion/heterogeneous data. Three types of dedicatedly-
designed CNNs are incorporated to exploit informa-
tion from sMRI, and a shallow network (i.e., multilayer
perceptron, MLP) is employed to exploit the clinical
information.

* A multi-head self-attention voting scheme is proposed
as an ensemble approach for base classifiers. The
interactions among the classifiers are considered, and
the defect that common voting approaches ignore the
relationships among classifiers is overcome.

* Multi-instance learning (MIL) is incorporated into base
CNN classifiers. The entropy-based MIL pooling layer
can reasonably consider the expressive abilities of
different slices and integrate slice-level features.

2 | MATERIAL AND METHODS

2.1 | Data acquisition and image
pre-processing

We consider a dataset obtained from ADNI-1 and ADNI-
2 in the Alzheimer's Disease Neuroimaging Initiative
(http://www.loni.ucla.edu/ADNI).28 The ADNI database
is the largest publicly available AD dataset and has been
used in quite a few studies. Specifically, the baseline
dataset contains T1-weighted MRI obtained from 771
subjects, which consists of 244 CN, 299 MCI, and 228
AD subjects. Depending on whether the MCI subjects
progressed to the AD stage within 36 months after base-
line assessment, they can be further divided into 170
sMCI and 129 pMCI subjects. The demographic infor-
mation (age, gender, and education years), cognitive and
neuropsychological measures (CDRSB, ADAS, MMSE,
RAVLT) as well as the ApoE4 genotyping of the subjects
are shown in Table 1.

As shown in Figure 1, the sMRI data go through
a standard pipeline preprocessing procedure, including
anterior-commissure (AC)—posterior commissure (PC)
correction, intensity correction, skull stripping, tissue
segmentation, and slice selection. Specifically, we use

Information summary of the studied dataset extracted from ANDI

TABLE 1

RAVLT

ADAS

APOE4 level

Education
(years)

Gender
(M/F)

Forgetting %forgetting

Learning

Immediate

CDRSB ADAS11  ADAS13 ADASQ4 MMSE

2

0

Age
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34.9 £ 26.7
50.9 + 30.7
774 +£27.8
88.8 +21.4

37+26

22
2.6
2.0

20+1.6

59+
4.9 +

45.4 +10.0
281+17 37.9+11.1

29.1+11

139+56 47+22

86+40 27+17

56+27
8.7+338

0.2+01

61
53
57

178
115

16.5+ 2.6
16.2+2.9
159+ 2.8
15.2+29

71.8+7.4

742 + 6.0
73.8+7.1

118/126

CN

+24

43

266+1.7 28.0+6.9

1.2+07

2.0

13
30
42

104

99/71

sMCI

+2.3

5.2

3.1+

231+20 229+7.1

199+66 301+78 86+15

130+40 214+52 74+19

+1.0

749+738

73/56

124/104

pMClI
AD

+1.7

4.5

+1.6

71 4.5

*The data are presented as mean + standard deviation (std).
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AC-PC correction
Size: 256x256x166

Original sMRI
Size: 256x256x166

Intensity correction
Size: 256x256x166

Slices sampled
Size: 256x256 &
300x300

GM segmentation
Size: 121x145x121

Skull stripping
Size: 256x256x166

FIGURE 1 The preprocessing pipeline of structural magnetic
resonance imaging (sMRI). The pipeline includes anterior
commissure—posterior commissure (AC—PC) correction, intensity
correction, skull stripping, tissue segmentation, and slice selection.
Taking an sMRI with the size of 256 x 256 x 166 voxels as an
example, the image size after each processing step is shown

the MIPAV software (https://mipav.cit.nih.gov/clickwrap.
php) for AC—PC correction and adopt N3 algorithm?>° for
intensity correction. Skull stripping and tissue segmen-
tation are performed by using the CAT12 toolbox (http://
dbm.neuro.uni-jena.de/cat/) via SPM12 software (http://
www.fil.ion.ucl.ac.uk/spm/software/spm). Following skull
stripping, the quality of the preprocessed images is
checked manually. And the qualified images are then
segmented to obtain the gray matter (GM) tissues,
which are aligned to Montreal Neurological Institute T1
Template*® The GM images are smoothed with a 3.0
mm full width at half maximum (FWHM) isotropic Gaus-
sian kernel. As a result, the sizes of obtained GM tissues
are 121 x 145 x 121 voxels, and the spatial resolutions
are 1.5x1.5x 1.5 mm3. Considering that GM is the
most notably affected tissue by AD, it is used for feature
extraction. Then, the 3D volumetric data are sectioned
along the axial direction, and the slices are sampled
from the central slice to the edges of the 3D volumet-
ric data. The edge slices largely cover cross-sections of
the brain stem, cerebellum, and cerebral cortex, which
are the anatomic areas less relevant to AD pathology.
Therefore, the middle two-thirds of the slices (80 slices)
are selected and resized to 256 x 256 and 300 x 300
pixels. The selected slices cover areas including ventri-
cle, inferior temporal, and middle temporal cortices. And
these areas have been reported as the regions corre-
lated with AD pathology, which can provide rich tissue
information.*!

For the clinical information, numerical normalization
(i.e., Min—-Max normalization) is employed to normalize
the values of each separate clinical factor to the range
of [0, 1].

2.2 | Overall ensemble learning
architecture

The proposed ensemble framework is illustrated in
Figure 2, where the inputs are the 3D sMRI data and
clinical information, and the output is the AD diagno-
sis (i.e., AD or CN) or MCI conversion prediction (i.e.,
pMCI or sMCI). Specifically, 3D sMRI and clinical infor-
mation of each individual are processed via several
preprocessing steps. After that, the multiple slices sam-
pled from 3D sMRI and normalized clinical information
are as the inputs of different base classifiers. The base
classifiers are designed to have different architectures,
each base classifier can play an important part in this
ensemble framework. Base classifier 1, base classifier
2, and base classifier 3 are used to extract the fea-
tures of images and give the initial predictions based
on sMRI data, where the entropy-based multi-instance
learning (MIL) pooling layer is designed to consider dif-
ferentinformation densities of slices and further improve
their expression abilities. Base classifier 4 is designed
as an MLP to make use of the clinical information,
which can introduce different patient information than
the sMRI modal. Then, four base classifiers are fused via
MHSA voting to obtain the classification results for two
classification tasks (i.e., AD vs. CN and pMCI vs. sMCI).

2.3 | Base classifiers in the ensemble
framework

In this section, the detailed architecture of each base
classifier and their mentalities of designing are intro-
duced, including three CNNs (base classifier 1, 2, and
3) and an MLP model (base classifier 4).

The architectures of base classifiers are shown in
Figure 3, all base CNN classifiers (base classifier 1,
2, and 3) have feature extraction, entropy-based MIL
pooling, and classification layer three parts. Scaling up
the dimension of network width, depth, and resolu-
tion has been widely used to improve the performance
of networks. However, scaling up a CNN in all three
dimensions of width, depth, and resolution will greatly
increase the number of parameters. Considering the
consumption of computing resources and the efficiency
of ensemble learning, it is not necessary to design an
overly complex model as one of the base classifiers.
Thus, the three base CNN classifiers are scaled up in
width, depth, and resolution, respectively. The number of
layers and the number of parameters in these classi-
fiers are controlled. As a result, the average number of
three CNNs parameters is less than that of ResNet34 42
and the layers of them are less than 19 layers. Specif-
ically, three base CNN classifiers have different scales
of network width, depth and resolution, respectively.
Base classifier 1 has higher resolutions than the other
two, which means that it can potentially capture more
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Available data

Clinical
information
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Classification

Task 1
* Alzheimer’s Discase
* Cognitively Normal

MHSA
Voting

Axial projections
(Image slices)

Task 2
* Progressive MCI
* Stable MCI

Data preprocess

| o

Normalized dafa

Base classifier 4
(MLP)

FIGURE 2 lllustration of the proposed ensemble framework for Alzheimer’s disease (AD) diagnosis and mild cognitive impairment (MCI)
conversion prediction. Raw 3D structural magnetic resonance imaging (sMRI) and corresponding clinical information of each individual are first
preprocessed, multiple 2D slices are sampled from each sMRI, and the clinical information is normalized. The processed data are then fed into
four different base classifiers, and an MHSA voting scheme aggregates the outputs of each base classifier for the final prediction
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FIGURE 3 The architectures of base classifiers. Base classifier 1, base classifier 2, and base classifier 3 are convolutional neural network
(CNN) based classifiers with magnetic resonance imaging (MRI) images as inputs, which mainly consist of convolutional layers, designed
special blocks (i.e., Res block, inception block), and pooling layers. Base classifier 4 is an multilayer perceptron (MLP) with clinical information as
inputs, and it consists of fully connected (FC) layers. The number of channels for each convolutional layer or special block is displayed above
them. When the sizes of the feature maps change after passing through some layers, the sizes are shown below the convolutional layers or
special blocks in the form of H x W
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fine-grained patterns. Base classifier 2 only scales up
in terms of network depth. Deeper networks can fit
more complex deep features. Base classifier 3 has a
wider architecture and can focus on richer features.
More details of these base classifiers will be introduced
as follows.

2.3.1 | Entropy-based multi-instance
learning pooling

AD-related pathological areas usually exist in some par-
tial areas of the brain, and these areas in sMRI images
are unlabeled, namely, only the entire sMRI image is
labeled as a certain category. As described in Sec-
tion 2.1, the slices are sampled from 3D volumetric data
along the axial direction and used as inputs of base CNN
classifiers. These processes can be seen as the con-
struction of bags in MIL. Considering the properties and
preprocessing processes of sMRI images, both tasks in
this work can be solved with the MIL strategy.

Let X = {Xj1, Xj, ..., Xin,} denotes the bag of the ith
sMRI, where x,; € RY(k =1, 2, ..., n,) represents the /th
slice of the kth bag. Then, these slices are input into the
feature extraction part of base CNN classifiers to obtain
slice-level features E; = {ej1, €j2, ..., €j5;}, followed by a
proposed entropy-based MIL pooling layer to generate
embedding-level features B; from slice-level features.
The proposed entropy-based MIL pooling layer com-
bines information entropy with MIL. The information
entropy of an image is a statistical form of the features,
which evaluates the information density of an image.
In general, the images with high entropy values have
more information about target areas (e.g., brain, lung,
etc.). In the clinical environment, for medical images with
explicit sequences, such as MRI and CT, physicians also
focus on the slices with more abundant tissue informa-
tion when diagnosing diseases. Entropy as a form of
reflecting image information density, combining it with
MIL cannot only be closer to actual clinical diagnosis,
but also further improve the performance of diagnosis.
This is the motivation for us to design entropy-based
MIL pooling. The entropy-based MIL pooling layer can
be described by the following equations:

B; = Concat"_ (h; - &) ()

H.
hy = norm( A ) 2)
=1 Hi

where hj is normalized weight that can be calculated by
Equation (2), and H; in Equation (2) is the information
entropy of the /th slice of ith sMRI. ¢; corresponds to
the Ith slice-level features of E;. Concat is channel con-
catenation. In addition, mean MIL pooling and maximum
MIL pooling are commonly used operators in MIL. Mean

MIL pooling considers that all slices have the same
ability to express the information of features, it gener-
ates embedding-level features by averaging slice-level
features. Maximum MIL pooling depends on only one
slice to determine the prediction of the individual. Dif-
ferent from these two pooling operators, entropy-based
MIL pooling comprehensively considers the information
entropy of different slices, which can utilize the informa-
tion expression ability of these slices to achieve a more
accurate diagnosis.

After obtaining embedding-level features 73;, the clas-
sification layer is used to predict the category (i.e., AD,
CN, pMCI, or sMCI) of each input sMRI

P(Y1X) = fos(Bi), @)

where P(Y|X) is the probability that the subject belongs
to a specific class, Y denotes the true category,and fs(-)
denotes the mapping function of the classification layer.

2.3.2 | Base classifier 1

The base classifier 1 is designed to have higher res-
olution, and it is constructed by stacking convolutional
layers without adopting more complex modules. Specif-
ically, base classifier 1 contains 12 convolutional (Conv)
layers, an entropy-based MIL pooling layer, and two
FC layers. The number of channels for Conv layers
is mainly 32, 64, 128, 256, and 512. Each Conv layer
consists of one convolutional layer, batch normalization
(BN), and rectified linear unit (ReLU) activation, where
the convolutional layer has 3x3 kernel size, unit stride
with unit zero padding. Several 3x3 max pooling layers
and an adaptive average pooling layer are inserted in
the specific positions of the model, which can down-
sample the number or depth of the intermediate feature
maps. An entropy-based MIL pooling layer is inserted
between the average pooling layer and FC layers. At the
end, two FC layers with 1024 and 2 nodes respectively
as classification layer are adopted to map distributed
features into the sample label space. The input images
of base classifier 1 have higher resolutions than those
of base classifier 2 and base classifier 3, and the
intermediate feature maps also have higher resolutions.
With high resolutions, base classifier 1 tends to be more
sensitive to fine-grained patterns, which can better
focus on subtle pathological changes in slices.

2.3.3 | Base classifier 2

The base classifier 2 with deeper depth is designed
to characterize complex nonlinearities. Scaling up the
depth of networks may bring gradient instability and net-
work degradation, therefore, base classifier 2 draws on
the idea of residual learning, which adopts Conv layers
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and residual (Res) blocks as main components. Specif-
ically, it consists of three Conv layers, six Res blocks,
an entropy-based MIL pooling layer, and two FC lay-
ers. At the beginning of the model, three Conv layers
with the same composition as in base classifier 1 are
used to extract shallow feature maps, where the number
of channels for Conv layers is 32, 32, and 64, respec-
tively. Then, a max pooling layer merges the features and
reduces their dimensions, followed by six Res blocks.
As shown in Figure 3, each Res block contains two
serial Conv layers, and the output of the second Conv
layer adds the input of the Res block through a short-
cut connection, the result of the addition is used as the
output of the Res block. The number of channels for
Res blocks is 64, 128, 128, 256, 256, and 512, respec-
tively. In order to achieve the effect of downsampling, the
stride of the first Conv layer in the third, fifth, and sixth
Res block is respectively set to 2, other Conv layers in
Res blocks have the same settings as the Conv layers
in the base classifier 1. After that, the average pool-
ing layer, MIL pooling layer, and classification layer that
same as base classifier 1 are adopted. Base classifier
2 with deeper depth is designed to characterize com-
plex nonlinearities. The Res blocks can transfer shallow
feature information extracted by three Conv layers to
deeper layers, thereby enhancing feature representa-
tions and strengthening their learning. Benefiting from
network depth, base classifier 2 has better nonlinear rep-
resentation ability, which can learn to fit more complex
features and generalize well on diagnostic tasks.

2.3.4 | Base classifier 3

The base classifier 3 is designed as a network with wider
architecture. The suitable network width can ensure that
the layers learn rich features, such as texture features in
different frequencies and different directions. Base clas-
sifier 3 consists of five Conv layers, six inception blocks,
an entropy-based MIL pooling layer, and two FC layers.
To maintain the proper size of feature maps, the stride of
the first Conv layer is set to 2, followed by four Conv lay-
ers, where 1x1 Conv layer allows the model to control
the depth of the feature more flexibly as needed. The
number of channels for Conv layers is 32, 32, 64, 128,
and 192, respectively. After serial Conv layers, the incep-
tion blocks further process the extracted features. As
shown in Figure 3, each inception block has four paths
to perform convolution operations on the input and con-
catenates to generate the output of the block, it contains
several 1x1, 3x3, and 5x5 Conv layers. The number of
input channels for inception blocks is 256,480,512,512,
768, and 1024, respectively. Similar to the base classifier
1, the 3x3 max pooling layers and an adaptive aver-
age pooling layer are inserted in the specific positions to
downsample the feature maps, the MIL pooling layer and
classification layer are inserted at the end of the model.
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In base classifier 3, the maximum number of channels
for blocks reaches 1024, which is twice the maximum
number of the other base CNN classifiers. More chan-
nels characterize richer feature information of images,
which can endow the model with better representational
ability. Thus, base classifier 3 with wide architecture
can potentially better learn and characterize rich tissue
information in slices.

2.3.5 | Base classifier 4
As summarized in Table 1, the clinical information data
including age, gender, cognitive test, etc. were collected
from the subjects. Since these data are not as compli-
cated as images, shallow neural networks are enough to
mine information in these clinical data. For this reason,
MLP is chosen as the base classifier 4. In more detail,
the MLP is composed of three layers, including an input
layer, a hidden layer, and an output layer. The number of
nodes for three layers is 15, 20, and 2, respectively. All
layers contain one FC layer, followed by BN and RelLU
activations. Since the MLP is simple in structure and
with few parameters, it is suitable for clinical information
data analysis.

The loss function in the proposed base classifiers for
classification can be formulated as:

L(X, Y, Eac) = —log(P(Y|X), Y), (4)

where X denotes the input data of the base classifiers
(i.e., sMRI for base CNN classifiers, clinical information
data for MLP), Y denotes the corresponding true label,
P denotes the predicted results, and w, is the learnable
parameters of these classifiers.

2.4 | Ensemble approaches for
classifiers

The predictions from these trained base classifiers are
combined by different ensemble approaches. Specifi-
cally, common voting approaches (i.e., majority voting,
weighted voting, SVM-based voting) and proposed
multi-head self-attention (MHSA) voting have been
performed on classifiers of ensemble framework and
compared. In common voting approaches, the fixed
weight is assigned to each classifier in the ensemble
for the aggregation of the classification results. The
major drawback of these approaches is that the aggre-
gation is not data-adaptive and ignores the interactions
among base classifiers, which potentially brings bias
to the final classification, especially in the presence of
weak base classifiers.

Considering that common voting approaches ignore
the interactions among base classifiers and potentially
introduce bias resulting in unreliable predictions, an
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FIGURE 4 lllustration of the proposed MHSA voting scheme. It
includes linear transformation, interaction calculation, and
aggregation for the final decision three parts. The linear
transformation part transforms the outputs of based classifiers into
three vectors Q, K, and V. The interactions among base classifiers
are calculated based on Q, K, and V by the interaction calculation
part. Then, these interactions are adopted to enhance the
representation and generate the final decision

MHSA voting scheme is proposed to aggregate the
results of base classifiers, which can calculate and
exploit the interactions among base classifiers during
their fusion. The MHSA voting is to calculate the corre-
lation and importance among the base classifiers, and
then use these interactions to aggregate the results and
obtain the final classification results. It is defined as
linear transformation, interaction calculation, and aggre-
gation and final decision three stages. The proposed
MHSA voting scheme is shown in Figure 4.

1. Linear transformation: In this stage, the outputs
of each base classifier are linearly transformed
into three vectors q, k, and v, and the distribu-
tion spaces of these vectors are basically the
same. Formally, an embedded representation is
constructed to represent the outputs of all base
classifiers. Denote the embedded representa-
tion as ®, where ® = [¢1, do,, B, -, n]" € RVXC.
Here, ¢, € R™*C(n=1,2,..,N) indicates the out-
puts of the nth base classifier, N and C are the
number of base classifiers and the output dimen-
sion of each base classifier, respectively. Define
Q, K, and V as the set of q, k, and v, respec-
tively, where Q =1[g1, gz, ..., gl = @ - WQ € RNXC,
K =k, ko, .., ky] =@ - WK € RNC,  and V=
[Vi, Vo, e, vyl = @ - WY € RNXC.Here, W@ e RCXC,
WK € R%C and WY € R®*C are the weights of the
linear transformation matrix.

2. Interaction calculation: In the second stage, we need
to score all the base classifiers based on the results
of a certain classifier, and this score determines the
degree of interactions among this classifier and other

base classifiers. The similarity between each pair of
base classifiers is calculated by the dot product of K
and Q,namely QK. Then, a SoftMax function is used
to normalize the similarity QK”,and get an interaction
score S € RV*N which can reflect the interactions
among the base classifiers.

S11. S12 v SN T
s=|% S2 S| somax() (5)
: : - : d

Snt SN2t SNN

where s; represents the interaction between the g;

and k;, \/E can make the MHSA voting scheme
have a more stable gradient flow during the training
process. After that, the V is multiplied by S, which
means maintaining the relationship among the asso-
ciated base classifiers and reducing the impact of the
less-correlated classifiers.

3. Aggregation and final decision: To learn interaction
information in different representation subspaces, the
above two stages are performed several times, and
the results of these times are concatenated and
linearly transformed.

A = Aggregation(Q, K, V) = Concat(S;V, ..., SpV) - WA,
(6)

where A is the aggregation result, S(k =1, ..., h)
indicates interaction score in different representation
subspaces, WA € R®%C is the linear transformation
matrix, Concat is channel concatenation. Then, the
aggregation result is passed through the residual
connection and the FC layer to enhance the repre-
sentation, and get the final decision, which can be
described by the following equation:

F=FCA+®)+A (7)

where F is the final decision generated by the MHSA
voting. The MHSA voting can achieve the modeling of
the interactions among the base classifiers and fuse
the outputs of each base classifier based on these
interactions.

2.5 | Implementations

The proposed ensemble framework is implemented
based on the PyTorch deep learning library. The frame-
work is trained on a PC with an NVIDIA GTX 1080Ti
graphics card. The loss function in Equation (4) is
adopted to supervise the learning of the base classifiers
parameters, which are optimized by the Adam optimizer
with a low learning rate of 0.0001.
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To validate the proposed framework, a series of
comparison and ablation experiments are conducted.
In the comparison experiments, several ML-based and
DL-based methods were compared with the proposed
framework to demonstrate the superiority of our frame-
work. Since all results acquired by different methods are
measured based on the same ADNI cohort, and most of
these methods have similar pre-processing pipeline and
implementation details to that in the proposed method,
we compare our results with the reported results by
the compared methods. In the ablation experiments, the
effectiveness of the entropy-based MIL pooling layer
and MHSA voting scheme, several studies are con-
ducted to evaluate the influence of transfer learning and
clinical information, and the indispensability of four base
classifiers. More details about the implementations are
as follows.

2.5.1 | Data split

Around 20% samples (154 samples) of the dataset are
selected as the test samples and the remaining 80%
samples (617 samples) as the training samples. A five-
fold cross-validation strategy is adopted to verify the
reliability of the proposed framework, in which four folds
of the training samples are used for training and one fold
for validation. To make sure that no significant difference
in the age and gender distributions among the training,
validation, and test samples, the Chi-square test is used
to verify the distributions.

2.5.2 | Training strategy

For task 1 (i.e., AD vs. CN), the base CNN classifiers are
trained from scratch directly,and the parameters of them
are initialized randomly. For task 2 (i.e., pMCI vs. sMCI),
transfer learning is adopted to train the base CNN clas-
sifiers. MCl is a preclinical stage of AD, the structural
changes of brains caused by MCI may be more subtle
than those caused by AD, which means task 2 is more
challenging than task 1. According to the development of
AD, the two tasks are highly correlated, and the informa-
tion learned from AD and CN subjects can be employed
as a supplement to enrich the information for task 2282
Thus, the parameters of base CNN classifiers trained on
task 1 are transferred to initialize the training for task 2.
Early stopping is applied for all training processes, the
training process is terminated when the validation loss
exceeds the lower threshold in 10 continuous epochs.

2.5.3 | Evaluation metrics

In two classification tasks, four evaluation metrics,
namely, classification accuracy (ACC), sensitivity (SEN),
specificity (SPE), and the area under the receiver oper-
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ating characteristic (ROC) curve (AUC) are adopted to
evaluate the classification performance. These metrics
are respectively defined as:

TP+ TN
ACC = T TN+ FP + FN (©)

TP

SEN = 357 FN ©
TN
SPE =1 Fp (10)

where TP denotes true positive, TN denotes true neg-
ative, FP denotes false positive, and FN denotes false
negative. The ROC curve is generated according to the
(SEN, 1—SPE) pairs. The AUC characterizes the classi-
fication performance of the methods, the performance
is better when AUC is closer to 1.

3 | RESULTS

3.1 | Comparison with other methods
To demonstrate the superiority of the proposed ensem-
ble framework, we compare the results on two tasks
of our method and other methods. The classification
results on ADNI dataset are summarized in Table 2.

In the task of AD vs.CN, the best ACC, SEN, SPE, and
AUC values implemented by previous works are respec-
tively 97.13%, 95.93%, 98.53%, and 98.77%, which are
realized by the works of Shi et al*> and Suk et al.'®
The proposed method has the ACC of 98.61%, the
SEN of 98.54%, the SPE of 98.67%, and the AUC of
99.08%, which are respectively 1.48%, 2.61%, 0.14%,
and 0.31% higher than the best metrics achieved by
other methods. In the task of pMCI vs. sMCI, the val-
ues of ACC, SEN, SPE, and AUC obtained by the
proposed framework are respectively 84.49%, 83.50%,
81.48%, and 85.69%. Our method achieves the best pre-
diction ACC, which is 1.59% higher than the best ACC
obtained by Zhang et al.*® These results show that the
proposed framework can indeed yield a more accurate
diagnosis, and have satisfactory performance on other
evaluation metrics.

3.2 | Effectiveness of entropy-based MIL
pooling

To evaluate the effectiveness of entropy-based MIL
pooling, we compare the results of base classifiers with-
out MIL pooling and with different MIL pooling layers.
The compared methods include non-MIL+averaging
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TABLE 2 Comparison of the proposed method with the existing state-of-the-art methods reported in the literature
AD vs.CN pMCI vs. sMCI
Methods Data ACC SEN SPE AUC ACC SEN SPE AUC
ML-based  Moradi et al?° sMRI + Clinical info  — - - - 82.00% 87.00% 74.00% 90.00%
Beheshti et al. 2 SMRI 93.01% 89.13% 96.80% 93.51% 75.00% 76.92% 73.23% 75.08%
Calvini et al 23 SMRI - 74.00% 85.00% 86.30% - - - -
Koikkalainen et al?*  sMRI 86.004 81.00% 91.00% - 72.10% 77.00% 71.00% —
Liu et al.?® sMRI 93.06% 94.85% 90.49% 95.79% 79.25% 87.92% 75.54% 83.44%
Shi et al 6 sMRI + PET + CSF  95.00% 95.30% 94.70% 93.20% - - - -
Tong et al?’ sMRI 90.00% 86.00% 93.00% - 72.00% 69.00% 74.00% —
Coupe et al?® sMRI 91.00% 87.00% 94.00% - 74.00% 73.00% 74.00% —
DL-based Suketal.'® sMRI + PET 95.35% 94.65% 95.22% 98.77% 75.92% 48.04% 95.23% 74.66%
Shietal*® sMRI + PET 97.13% 95.93% 98.53% 97.20% 78.88% 68.04% 86.81% 80.10%
Liu et al#4 sMRI + PET 91.40% 92.32% 90.42% - - - — -
Cuietal?® sMRI 92.29% 90.63% 93.72%  96.95% 75.00% 73.33% 76.19% 79.70%
Liu et al?® sMRI 91.09% 88.05% 93.50% 95.86% 76.90% 42.11% 82.43% 77.64%
Kang et al 34 sMRI 90.40% — - - 66.70% — - -
Lian et al.*® sMRI 90.30% 82.40% 96.50% 95.10% 80.9% 52.60% 85.40% 78.10%
Chen et al*’ sMRI 95.32% 91.18% 93.94% - 77.60% 71.62% 75.85% —
Zhang et al *8 sMRI 93.20% 92.40% 94.00% 96.10% 82.90% 90.00% 75.70% 86.50%
Basaia et al.?2 sMRI + PET + CSF  93.20% 93.00% 93.30% — - - - -
Proposed sMRI + Clinical info  98.61% 98.54% 98.67% 99.08% 84.49% 83.50% 81.48% 85.69%

method, mean MIL pooling method, and maximum pool-
ing method. The non-MIL+averaging method has the
same architectures as base CNN classifiers except
no MIL pooling, and performs classification through
averaging the slice-level results. Both mean MIL pool-
ing method and maximum pooling method also have
the same architectures as base CNN classifiers, only
replacing the entropy-based MIL pooling layer. The clas-
sification results in terms of ACC and AUC for two tasks
are shown in Figure 5.

From Figure 5, it can be learned that MIL methods
(i.e., mean MIL pooling, max MIL pooling, and entropy-
based MIL pooling) yield better results in terms of ACC
and AUC. Taking the base classifier 1 as an example, the
ACC and AUC achieved by MIL methods are on average
higher 0.0319 and 0.0247 than non-MIL method in task
1, and higher 0.0199 and 0.0249 in task 2. Compared
with mean MIL pooling and max MIL pooling methods,
the proposed entropy-based MIL pooling achieves the
best results on both tasks, which can reach 0.9372 ACC
and 0.9480 AUC on task 1 (achieved by base classifier
2),0.7959 ACC and 0.8081 AUC on task 2 (achieved by
base classifier 1). The above results reflect that the MIL
methods can improve the classification performance
than the non-MIL method, and confirm that the entropy-
based MIL pooling method is more effective than the
normal MIL methods, which shows the effectiveness of
entropy-based MIL pooling.

3.3 | Effectiveness of multi-head
self-attention voting

A key component of the proposed ensemble framework
is the ensemble approaches to fuse the base classifiers.
We conduct the experiments to verify the effectiveness
of MHSA voting. Specifically, base classifier 1,base clas-
sifier 2, and base classifier 3 are fused via different vot-
ing approaches including majority voting (MV), weighted
voting (WV), SVM-based voting (SVM), and the pro-
posed MHSA voting. Table 3 reports the corresponding
results of different ensemble approaches.

From Table 3, it can be observed that two learn-
able ensemble approaches (i.e., SVM-based voting, and
MHSA voting) yield better classification performance on
two tasks than unlearnable approaches (i.e., MV and
WV). In the task of AD vs. CN, the results obtained by
MV and WV are lower than the maximum values of
ACC and AUC (achieved by base classifier 2) before
fusion. And the results obtained by SVM-based voting
are basically consistent with the maximum values before
fusion. Only the MHSA voting achieves an improvement
in results, with the ACC of 0.9419, and the AUC of
0.9545, which is at least 0.0047 higher than the met-
rics generated by base classifiers. In the task of pMCI
vs. sMCI, all ensemble approaches can obtain better
results than that before fusion. The results obtained via
MV have the minimum improvement, with the ACC of
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TABLE 3 Classification results of different ensemble approaches on two tasks
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pMCI vs. sMCI

ACC

AUC

Ensemble Ensemble AD vs.CN

members approach AcC AUC

Base classifier 1 - 0.9233 + 0.0314 0.9393 + 0.0323

Base classifier 2 - 0.9372 + 0.0311 0.9480 + 0.0207

Base classifier 3 - 0.9186 + 0.0416 0.9388 + 0.0315

Base classifier 1,2,3 MV 0.9279 + 0.0283 0.9306 + 0.0301
WV 0.9302 + 0.0245 0.9415 + 0.0202
SVM 0.9349 + 0.0209 0.9478 + 0.0199
MHSA 0.9419 + 0.0232 0.9545 + 0.0205

0.7959 + 0.0454
0.7837 + 0.0447
0.7857 + 0.0492
0.8061 + 0.0366
0.8265 + 0.0409
0.8286 + 0.0422
0.8408 + 0.0350

0.8081 + 0.0271
0.7929 + 0.0251
0.7963 + 0.0332
0.8165 + 0.0318
0.8316 + 0.0431
0.8367 + 0.0395
0.8535 + 0.0283

Note: Data are mean =+ standard deviation.

Abbreviations: MHSA, MHSA voting; MV, majority voting; SVM, SVM-based voting; WV, weighted voting.

0.8061, and the AUC of 0.8165. The maximum improve-
ment on results is achieved by MHSA voting, which is
at least 0.0449 higher than the metrics generated by
base classifiers. Compared with these common ensem-
ble approaches, MHSA voting can further improve the
effects of fusion. These results confirm the effectiveness
of using MHSA voting.

3.4 | Influence of transfer learning

To demonstrate the impact of transfer learning, we com-
pare the experimental results with and without transfer
learning. In this group of experiments, we train base
classifiers from scratch for task 2 without adopting
transfer learning strategy, and compare their classifica-
tion performance with that obtained by base classifiers
trained with transfer learning strategy. Figure 6 shows
the classification results in terms of ACC and AUC for
task 2.

As shown in Figure 6, it can be seen that transfer
learning strategy significantly improves the classifica-
tion performance. Take base classifier 1, 2, 3, 4 fused
via MHSA voting as an example, with the aid of transfer
learning, it improves the ACC from 0.8106 to 0.8449, the
AUC from 0.8196 to 0.8569, which has at least a 4.23%
boost. Meanwhile, other methods trained with transfer
learning have higher gain percentages, the ACC has an
average gain of 5.65%,and the AUC has an average gain
of 6.13%. These results indicate that the use of transfer
learning strategy can indeed improve the classification
performance on task 2.

3.5 | Influence of clinical information

As introduced in Section 2.3.5, base classifier 4 (i.e.,
MLP) is chosen for clinical information analysis. Base
classifier 4 is fused with other base classifiers via MHSA
voting to construct a multi-model ensemble framework.
To investigate the influence of clinical information, we

compare the classification performance achieved by
Only Clin info (base classifier 4), Without Clin info (base
classifier 1, 2, 3 fused via MHSA voting), and With Clin
info (base classifier 1,2, 3,4 fused via MHSA voting). The
corresponding results are as demonstrated in Table 4.

As shown in Table 4, for the task of AD vs. CN,
the use of clinical information can significantly improve
the diagnosis performance. Compared with the results
achieved by Without Clin info, With Clin info improves
the ACC from 0.9419 to 0.9861, the SEN from 0.9268 to
0.9854, the SPE from 0.9556 to 0.9867, and the AUC
from 0.9545 to 0.9908. And the quantification biases
of ACC, SEN, and AUC obtained by With Clin info are
smaller than that of Without Clin info. Only Clin info can
obtain similar performance to With Clin info in terms
of ACC. However, the SEN, SPE, and AUC achieved
by Only Clin info are lower than that achieved by With
Clin info, and the quantification biases of these metrics
are also higher. For the task of pMCI vs. sMCI, the use
of clinical information also improves diagnosis perfor-
mance, but not as significantly as the task of AD vs.
CN. With Clin info yields better results, with the ACC
of 0.8449, the AUC of 0.8569, which are higher than
that obtained by the other two methods. Though Without
Clin info yields similar performance to With Clin info, the
quantification biases of all metrics are higher than that
obtained by With Clin info. The above results reveal that
the use of clinical information can provide better classi-
fication performance and reduce the quantification bias
of diagnosis.

3.6 | Indispensability of four base
classifiers

To prove the indispensability of the four types of base
classifiers, we summarize and compare the classifi-
cation performance of fused different types of base
classifiers. Specifically, base classifier 1,2, 3, and 4 are
randomly fused by MHSA voting. The corresponding
results for task 1 and task 2 are reported in Table 5,
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TABLE 4 Classification results of different methods with and without clinical information

Task Method ACC SEN SPE AUC

AD vs.CN Onlyclin info. 0.9837 + 0.0204 0.9756 + 0.0209 0.9778 + 0.0298 0.9848 + 0.0167
Withoutclin info. 0.9419 + 0.0232 0.9268 + 0.0311 0.9556 + 0.0199 0.9545 + 0.0205
Withclin info. 0.9861 + 0.0182 0.9854 + 0.0233 0.9867 + 0.0221 0.9908 + 0.0143

pMCl vs. sMCI Onlyclin info. 0.6980 + 0.0870 0.7255 + 0.0744 0.7037 + 0.0661 0.6987 + 0.0598
Withoutclin info. 0.8408 + 0.0350 0.8273 + 0.0422 0.8234 + 0.0406 0.8535 + 0.0283
Withclin info. 0.8449 + 0.0332 0.8350 + 0.0405 0.8148 + 0.0341 0.8569 + 0.0214

Note: Data are mean + standard deviation.

TABLE 5 Classification results of fused different types of base classifiers

No.

of
Cls Members

AD vs.CN

ACC

AUC

pMCI vs. sMCI

ACC

AUC

1 Base classifier 1
Base classifier 2
Base classifier 3
Base classifier 4

2 Base classifier 1,2
Base classifier 1,3
Base classifier 2,3
Base classifier 1,4
Base classifier 2,4
Base classifier 3, 4

3 Base classifier 1,2,3
Base classifier 1,2,4
Base classifier 1,3,4
Base classifier 2,3,4

4 Base classifier 1,2, 3,4

0.9233 + 0.0314
0.9372 + 0.0311
0.9186 + 0.0416
0.9837 + 0.0204
0.9396 + 0.0276
0.9253 + 0.0291
0.9380 + 0.0323
0.9847 + 0.0197
0.9856 + 0.0184
0.9847 + 0.0187
0.9419 + 0.0232
0.9855 + 0.0265
0.9841 + 0.0227
0.9852 + 0.0197
0.9861 + 0.0182

0.9393 + 0.0323
0.9480 + 0.0207
0.9388 + 0.0315
0.9848 + 0.0167
0.9539 + 0.0191
0.9405 + 0.0198
0.9485 + 0.0212
0.9863 + 0.0155
0.9902 + 0.0152
0.9866 + 0.0152
0.9545 + 0.0205
0.9902 + 0.0144
0.9862 + 0.0156
0.9900 + 0.0137
0.9908 + 0.0143

0.7959 + 0.0454
0.7837 + 0.0447
0.7857 + 0.0492
0.6980 + 0.0870
0.7999 + 0.0371
0.8018 + 0.0466
0.7993 + 0.0322
0.7967 + 0.0507
0.7901 + 0.0581
0.7896 + 0.0482
0.8408 + 0.0350
0.8059 + 0.0382
0.8122 + 0.0394
0.8041 + 0.0435
0.8449 + 0.0332

0.8081 + 0.0271
0.7929 + 0.0251
0.7963 + 0.0332
0.6987 + 0.0598
0.8102 + 0.0298
0.8143 + 0.0248
0.8036 + 0.0231
0.8098 + 0.0336
0.8003 + 0.0364
0.7998 + 0.0342
0.8535 + 0.0283
0.8154 + 0.0350
0.8205 + 0.0312
0.8181 + 0.0344
0.8569 + 0.0214

Note: Data are mean + standard deviation.

and some of the ROC curves for the two tasks are
respectively represented in Figure 7.

From Table 5, when four base classifiers are fused, the
best classification results can be obtained, the values of
ACC for task 1 and task 2 are respectively 0.9861 and
0.8449, the values of AUC are respectively 0.9908 and
0.8569. And the quantification bias is also satisfactory.
Base classifier 1, base classifier 2, and base classifier
3 have similar performance on both tasks. Base classi-
fier 4 (i.e., MLP) achieves great performance on task 1,
while it performs not good on task 2. When two base
CNN classifiers are randomly fused, the classification
results are similar to that achieved by a single CNN
classifier, and the quantification biases are lower. Due
to the influence of clinical information, any base CNN
classifier (i.e., base classifier 1, 2, and 3) fused with
base classifier 4 could further boost the diagnosis per-
formance, especially in the task of AD vs. CN. Though

one base CNN classifier fused with base classifier 4 can
improve the ACC and AUC, the quantification biases of
them are higher than that before fused with base classi-
fier 4. When three base classifiers are randomly fused,
the fusions that include base classifier 4 can yield sat-
isfactory results in the task of AD vs. CN, which are
better than the fusions only including base CNN clas-
sifiers. In the task of pMCI vs. sMCI, we can see that
the fusions only including base CNN classifiers have
the better performance than that fusions including base
classifier 4.

From Figure 7, it can be learned that the fusion of
four base classifiers has better ROC curves than oth-
ers. The results in Table 5 and Figure 7 illustrate that
the fusion of these base classifiers can achieve bet-
ter diagnosis performance than a single classifier, and
each base classifier could play an important part in the
ensemble framework.
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FIGURE 5 Classification results in terms of accuracy (ACC) and
area under the curve (AUC) achieved by three base convolutional
neural network (CNN) classifiers with different Multi-instance
learning (MIL) pooling layers for two tasks, that is, Alzheimer’s
disease (AD) vs. cognitively normal (CN), and progressive MCI
(PMCI) vs. stable MCI (sMCI). The error bars denote the standard
deviations of the results

4 | DISCUSSIONS

This work presents a reliable ensemble framework to
diagnose AD and MCI using neural networks. MHSA
voting improves the fusion of base classifiers in the
ensemble, and entropy-based MIL strategy could use
more effective information contained in sMRI. Overall,
the proposed method provides the reliable diagnosis
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FIGURE 6 Classification results in terms of ACC and AUC
achieved by base classifiers trained without and with transfer
learning for task 2. Base classifier 1,2, 3 and base classifier 1,2, 3,4
are fused via MHSA voting. The error bars denote the standard
deviations of the results

of AD and prediction of MCI conversion. We built our
method based on ensemble learning for several rea-
sons. First,though DL-based methods have been shown
to surpass human experts in predictive ACC, they tend
to exhibit higher variance, especially when only a sin-
gle DL model is adopted. However, reliable diagnosis is
needed in the clinic, high variance makes it hard for a sin-
gle model to generate convincing judgments. In contrast
to a single DL model, ensemble learning that combines
the outputs of multiple DL models has been proven to
achieve better outcomes and generalizability*® which
is more applicable in clinical settings. Second, because
the characteristics of AD are concealed, slow, and non-
lethal, the collection of samples is difficult, often resulting
in the limited number of samples. The limited number of
samples may lead to over-fitting or inadequate training
of a model, and limit the identification of complex AD
patterns. Ensemble learning has the power in dealing
with these challenges.®?

We compared the performance of the proposed
method against several ML-based and DL-based
methods. In all compared methods, MRI images
were preprocessed through a similar pipeline to
this work, including motion correction, intensity cor-
rection, skull stripping, and normalization. Following
this basic pipeline, different methods then performed
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some specific operations (e.g., tissue segmentation
and slices sampled in this work) to generate slices,
regions, or patches of the brain according to the needs
of these methods. In addition, cross-validation and
corresponding data split were also adopted in most of
the compared methods,'820.21.25-28,34.43-4547 gn( they
took the average of the cross-validation results as the
final performance. These means such as preprocess-
ing procedures or cross-validation are a part of the
compared methods and have no impact on demonstrat-
ing the effectiveness of the proposed method. As the
results shown in Section 3.1, our method significantly
outperformed the compared methods in classification
ACC for both tasks (AD vs. CN, pMCI vs. sMCI). Noting
that some compared methods'820.24:25.27,29,43,46,48
had quite unbalanced SEN and SPE, the imbalance
of SEN and SPE indicates that the missed diagnosis
or misdiagnosis rate of these methods was high. A
previous work?® achieved SEN of 42.11%, and the SPE
of 82.43% in the task of pMCI vs. sMCI, which means
only 42.11% pMCI patients were correctly diagnosed
and 17.57% sMCI patients were misdiagnosed. The
proposed method achieved balanced and satisfactory
SEN and SPE for both tasks, which demonstrates that
our method can conduct a reliable diagnosis. Further-
more, the five-fold cross-validation approach has been
performed in this work. The mean values and stan-
dard deviation of ACC and AUC are as demonstrated in
Table 5. The proposed method achieved the best results
on both tasks, which had the ACC of 0.9861 + 0.0182
and the AUC of 0.9908 + 0.0143 on AD vs. CN task,
the ACC of 0.8449 + 0.0332 and the AUC of 0.8569
+ 0.0214 on pMCI vs. sMCI task. The quantification
biases of these metrics were effectively reduced by the

use of ensemble learning, which was lower than that of
each base classifier. The results with low quantification
bias generated by our method indicate that the pro-
posed method is able to generate a robust diagnosis,
which is also in good agreement with the effect of
ensemble learning.

In this work, MHSA voting is proposed to aggregate
the outputs of base classifiers as previous studies®*36
typically adopted the common voting approaches which
ignore the interactions among base classifiers. The
maijority voting, weighted voting, and SVM-based voting
are commonly used for the aggregation in the ensemble.
However, these common voting approaches sometimes
may cause a decrease or stay flat on results after
fusion. The reason for this is that MV and WV are
not data-adaptive, they assign the fixed weight to each
base classifier. Though SVM-based voting is a learnable
ensemble approach, it leaves the interactions among
the ensemble members out of consideration. MHSA vot-
ing has been shown to have an improvement on results
after fusion. This implies that the interactions among
the base classifiers can play a role during their fusion,
and MHSA voting can exploit the interactions to gen-
erate better classification results during the fusion of
base classifiers.

While MIL strategy has been applied in the diagno-
sis of different diseases, to our knowledge, rare studies
have explored it in the diagnosis of AD based on the
slice level. We incorporated entropy-based MIL strategy
into base CNN classifiers to use more effective infor-
mation contained in sMRI. As shown in Figure 5, MIL
strategy can indeed further improve the performance
of both tasks in contrast to non-MIL methods, in which
the proposed entropy-based MIL strategy has been
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FIGURE 8 Comparison of the loss function curves achieved by
training without and with transfer learning for task 2

shown to achieve the best classification results. Due to
AD-related pathological areas having the uneven distri-
bution in sMRI, non-MIL methods are easily affected,
thereby resulting in sub-optimal performance in two
tasks. Compared with non-MIL methods, MIL meth-
ods consider the relationships between slices, which is
beneficial to improving the utilization of information con-
tained in sMRI. The normal MIL methods (i.e., mean
MIL method, and maximum MIL method) consider that
the relationships between slices have no difference, and
the slices have similar feature expression abilities. Nev-
ertheless, the slices with abundant tissue information
are generally getting more attention in clinical diagno-
sis, and radiologists also focus on these slices. Similar
to the habit of radiologists’ review of MRI, the pro-
posed entropy-based MIL method measures the feature
expression abilities of different slices according to their
information entropy, which can generate more reason-
able embedding-level features for further classification.
And therefore, the entropy-based MIL method has better
performance than normal MIL methods.

Transfer learning improved the classification results
in terms of ACC and AUC by ~ 4% across two tasks.
This situation is consistent with existing studies.?82°
The results demonstrate that the two tasks are corre-
lated, and the supplementary information from AD and
CN subjects implicitly enriches the features in the task
of pMCI vs. sMCI during training. In addition, we also
analyzed the influence of transfer learning on training
duration. Here, we trained the proposed method for task
2 without early stopping and set the epochs to 150.
Figure 8 shows the loss function curves with and without
transfer learning during training. As observed in Figure 8,
the training loss has a faster downward trend than the
validation loss, and after the convergence of training, the
validation loss is slightly more than the training loss. With
transfer learning, the initial values of training and val-
idation losses (epoch 1) were lower than that without
transfer learning, and the validation loss converged to
about 1.6 after epoch 64. The validation loss converged
to about 2.0 after epoch 85 when transfer learning strat-
egy was not adopted. These results show that the model
can fit the data better and faster when using transfer

learning. In this work, early stopping was adopted with
the patience of 10 epochs on the validation loss, and
the training time was 5 min per epoch. For the task of
pMCI vs. sMCI, the training lasted about 6 h, which can
save about 1.7 h in contrast to that training without trans-
fer learning. For the task of AD vs. CN, the training time
was about 7.5 h.

As different imaging modalities and clinical data
can provide various information about AD patients, we
adopted multimodal data (sMRI and clinical information)
to develop an ensemble framework. In this work, the use
of multimodal data led to an overall improvement in both
tasks, which improved the diagnosis performance and
reduced the quantification bias. From Table 2, it can be
observed that most studies using multimodal data have
better performance than the studies using single-modal
data. Moreover, we analyzed the SEN of clinical informa-
tion to two tasks. For the task of AD vs. CN, the use of
clinical information only can also obtain satisfactory per-
formance, while for the task of pMCI vs. sMCI, the use
of clinical information only cannot achieve good results.
These results show that the clinical information is more
sensitive to the task of AD vs. CN than that to the task
of pMCI vs. sMCI. It can be also learned that cognitive
and neuropsychological measures in clinical information
change greatly from normal cognition to dementia, and
these measures have no significant change in CN or
MCI stages. This inference is consistent with previous
research %%

AD is an irreversible neurodegenerative disease with
concealed, slow, and non-lethal characteristics, which is
also a serious social problem. The dementia symptoms
caused by AD gradually worsen over several years. In
general, a person with AD lives 4-8 years after diag-
nosis but can live as long as 20 years, depending on
other factors (e.g., earlier diagnosis or intervention). At
present, AD has no cure, some treatments can only tem-
porarily slow the worsening of dementia symptoms and
improve the quality of life for AD patients and their care-
givers. Earlier diagnosis of AD is crucial for prolonging
the lifespan and improving the quality of life for those
with AD. Our proposed ensemble framework is able to
generate reliable and robust results for the diagnosis
of AD and the prediction of MCI conversion, which has
great practical significance for the earlier diagnosis of
AD. The detailed analyses of the results give an impor-
tant indication that the proposed ensemble framework
can potentially be employed in the reliable diagnosis of
AD and prediction of MCI conversion. Furthermore, due
to the characteristics of AD,the collection of AD samples
is difficult in clinical settings. With ensemble learning, the
dilemma caused by the limited number of samples can
be solved to some extent3? The proposed method is
based on ensemble learning, which makes our method
potential to perform reliable diagnoses under limited
data, thereby reducing the burden of physicians collect-
ing data. In many clinical settings, because it is difficult to
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identify the exact cause of dementia, multiple diagnos-
tic tests are typically adopted to determine if a person
has AD, including brain imaging, mental cognitive sta-
tus tests, etc. To closer to practical clinical application
and obtain a more reliable diagnosis, we also adopted
the multimodal data in this work. It is worth noting that
our method can also achieve satisfactory results only
using sMRI.

This current work has some limitations despite its
successful performance in AD diagnosis and MCI con-
version prediction. The black-box nature is a common
limitation of deep learning methods, which is also the
main reason that limits the widespread application of
medical artificial intelligence (Al). In clinical settings, to
determine whether a person suffers from a certain dis-
ease, it needs to undergo a detailed clinical examination,
and the physicians confirm the condition of this person
according to the clinical test results. In this process, the
basis for the diagnosis is detailed and clear. For medi-
cal Al, the details of algorithmic decision-making should
also be exposed like clinical diagnosis, which is currently
difficult. Note that conceptual understanding and expe-
riences owned by physicians are impossible for Al to
fully learn. To deploy an explainable Al in medical prac-
tices, it still requires the necessary human oversight.®?
The interactive deep learning with the “human in the
loop” can be potentially considered as a robust way
to handle explainability. This human-in-the-loop deep
learning combines the conceptual understanding and
experiences owned by physicians with the effectiveness
of deep learning, which can ensure that decision-making
is controllable and clinically justified. As a high level of
accountability is required in the medical field, machined
decisions and predictions need to be explained clearly,
our future work will include exploring human-in-the-loop
deep learning.

5 | CONCLUSION

In this paper, a robust ensemble framework is pro-
posed for reliable diagnosis of AD and prediction of
MCI conversion. Specifically, three base CNN classi-
fiers with different scales of network width, depth, and
resolution are designed to capture detailed features
in sMRI. To better use effective information contained
in sMRI, we incorporate entropy-based MIL strategy
into base CNN classifiers, which can take the informa-
tion densities of slices into account to generate more
reasonable features for classification. Additionally, one
shallow classifier (i.e., MLP) is employed to analyze the
clinical information. The final diagnosis is achieved by
MHSA voting approach that aggregates the predictions
of base classifiers while considering the interactions
among them. Extensive experimental results on ADNI
database show that the proposed ensemble framework
has reliable and competitive performance in both tasks.
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